reklama - zainteresowany?

Feature Engineering for Machine Learning. Principles and Techniques for Data Scientists - Septem

Feature Engineering for Machine Learning. Principles and Techniques for Data Scientists
ebook
Autor: Alice Zheng, Amanda Casari
ISBN: 978-14-919-5319-8
stron: 218, Format: ebook
Data wydania: 2018-03-23
Księgarnia: Septem

Cena książki: 203,15 zł (poprzednio: 236,22 zł)
Oszczędzasz: 14% (-33,07 zł)

Dodaj do koszyka Feature Engineering for Machine Learning. Principles and Techniques for Data Scientists

Tagi: Analiza danych

Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you’ll learn techniques for extracting and transforming features—the numeric representations of raw data—into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering.

Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples.

You’ll examine:

  • Feature engineering for numeric data: filtering, binning, scaling, log transforms, and power transforms
  • Natural text techniques: bag-of-words, n-grams, and phrase detection
  • Frequency-based filtering and feature scaling for eliminating uninformative features
  • Encoding techniques of categorical variables, including feature hashing and bin-counting
  • Model-based feature engineering with principal component analysis
  • The concept of model stacking, using k-means as a featurization technique
  • Image feature extraction with manual and deep-learning techniques

Dodaj do koszyka Feature Engineering for Machine Learning. Principles and Techniques for Data Scientists

 

Osoby które kupowały "Feature Engineering for Machine Learning. Principles and Techniques for Data Scientists", wybierały także:

  • Data Science w Pythonie. Kurs video. Algorytmy uczenia maszynowego
  • Data Science w Pythonie. Kurs video. Przetwarzanie i analiza danych
  • Power BI Desktop. Kurs video. Wykorzystanie narz
  • Korporacyjne jezioro danych. Wykorzystaj potencja
  • J

Dodaj do koszyka Feature Engineering for Machine Learning. Principles and Techniques for Data Scientists

Spis treści

Dodaj do koszyka Feature Engineering for Machine Learning. Principles and Techniques for Data Scientists

Code, Publish & WebDesing by CATALIST.com.pl



(c) 2005-2025 CATALIST agencja interaktywna, znaki firmowe należą do wydawnictwa Helion S.A.